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It is shown that the principal non-linear interaction of inviscid inertial modes 
does not produce a resonant response in the steady geostrophic circulation. The 
rectified geostrophic flow manifested in a closed rotating container by a periodic 
excitation seems to result from a combination of viscous and non-linear effects 
within the boundary layers. 

1. Introduction 
Anumber of rotating fluid experiments have been conducted (e.g. Fultz 1959; 

Malkus 1968) which either produce or require pure inertial modes in closed 
containers. In  each of these, as the level of excitation is increased beyond the 
linear range, a steady zonal flow invariably appears m a manifestation of some 
non-linear interaction. It has been conjectured that this interaction takes place 
within the viscous boundary layer at  the containing wall. Indeed, Busse (1968) 
has confirmed this in one particular case and has shown that the most important 
regions in this respect are those surrounding the critical latitudes (where the 
basic oscillation frequency is exactly twice the component of the rotation vector 
along the normal to the boundary). 

The object of this note is to present further evidence in support of this con- 
tention by proving that a purely inviscid, non-linear interaction of inertial 
modes does not produce a ‘significant ’ rectified motion in a closed configuration. 
Thus, it appears that a combination of viscous and non-linear effects within the 
boundary layer is the essential mechanism in the development of the steady 
interior circulations observed. 

2. Formulation 
If the scales of length, time and relative velocity (in the uniformly rotating 

frame for which S2 = Qf) are characterized by L, Q-l and sQL where 8 is small, 
then the dimensionless inviscid boundary value problem is 

a 
at - 9 + 2f x q = - vp - €{* V(q . q) + (V x q) x q>, 

v . q  = 0, ( 2 )  

with 
17 

q . n  = 0 ( 3) 
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on Z, the surface of the container whose normal is n. Let the top and bottom 
surfaces of the container, 2 = XT + Z B ,  be represented by 

= fc.7 9) (xT), = -9 (x, 9) (4) 

n, = L-vf = (1 + (0f)2)4ii,, 1 
nB = - & - v g  = (1+(vg)2)+iiE.\ ( 5 )  

We consider container configurations for which the general solution of the 
inviscid linear problem is a superposition of normal modes, of which there are 
two types. There are an infinite number of inertial oscillations typically repre- 

(6) 
sented by 

and a single geostrophic mode, a steady zonal flow, of the form 

q = s(r),  23 = $(r). (7) 

so that 

q = Q,(r) exp (iA,t), p = @,(r) exp (iA,t), 

The equations for the modes are obtaining by setting 8 = 0 in (1) and substituting 
the particular functional forms for velocity and pressure. For example, 

(8) ih,Q,+ 2& x Q, = - VQ,, V . Q, = 0, 

with Qm.f i=O on E. 

These modes have the following important properties (see Greenspan 1968): 

(i) 
(ii) J Qm.QAdV =to, 

A, is real and I A, I < 2; 
(9) 

for n $. m, where V is the volume of the container and t denotes complex con- 
jugate; 

(iii) $ (r) = $ ( I t ) ,  (10) 

where h = f+ g;  

np x n,; 1 a4 (h )  
2 ah 

(iv) q(r) = q(x ,y )=  --__ 

(v) f ( ( Q m ) )  ads = 0, (12) 
Q 

where 6 is a closed geostrophic contour of constant height, It  = f + g  (whose 
tangent vector is nT x n,/ I n, x nB I ) and 

The general, linear, inviscid solution is assumed to be a synthesis of all the 

Moreover, if q (r, 0) = q, (r) at t = 0, then it follows from properties (ii) and (v) 
that 



and 

where 
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(16) 

We proceed now to construct a general solution of the equations of motion 
(l), (2) with the restriction that the non-linear interactions are weak, i.e. B < 1. 
To this end, the form of the linear solution, (14), is modified to account for a slow 
time variation on a scale dictated by the parameter cl. Therefore, let 

where q is a solution of the steady geostrophic equations and Q,(r) are the modal 
functions identified earlier. This representation automatically satisfies the diver- 
gence equation, (2), and the boundary conditions. The explicit form of q (its 
dependence on t )  and the coefficient functions A,(t) must now be determined. 

3. Weak interactions 
The substitution of (17) into ( 2 )  and use of the orthogonality and mean circula- 

tion conditions, (9) and (12), result in the following ‘condensed’ equations for 
the unknown functions: 

s (18) __- ‘ A m  ihmA,= --E Q t . ( V x q ) x q d V ,  
at 

h f g 2  .ds  = --E ( (Vxq)xq) .ds .  
$6 

The integrals on the right-hand sides are functions of all the unknown coefficients 
(see the appendix for the explicit forms) and at this point the assumption of weak 
non-linearity, or small E ,  must be invoked. This is done through the introduction 
of a perturbation expansion whose structure also incorporates multiple time 
scales in order to maintain a uniformly valid solution: 

&(t) = Am, (t,  7, f , .  ..) + €.& (t,  7 ,  f, . ..) -k ..., 
q (x, y ,  t ,  = q0 (x> y ,  t ,  ‘ 9  i?..’) +‘ql (x7!/, t r 7 ,  t,“’) + *.., ] (20) 

where 7 = E t ,  t = sst, .... (21) 

$ (h, t )  = $0 (h, t ,  7,  i 5 . e  .) + €41 (h, t ,  7, f , .  ..) + * 9 .) 

The time derivatives then appear as follows: 

I + ..., dAm aAm0 I (at;l I aAm0) 
at at a7 

a ,)+ a a  
-q  = -qo+E -q1+-q .... at at (:t a7 

17-2 



260 H. P .  Greenspan 

Upon substituting these series in (18) and (19) and equating powers of 8, we find 
that to lowest order 

A,, = a,, (7, t, . . . ) exp (ih,b), (23) 
a 

and g o  = 0, 

or q,=q,(x:y,r , t  ,...) =--(-+,(h,r,t 2 ah ,... 1) nTxnB.  (24) 
i a  

(The essential details for all the calculations in this section are presented in the 
appendix.) At the next step, that is terms of order 6, it becomes necessary to 
eliminate secular terms (e.g. texp (ih,t)) to assure a uniformly valid expansion. 
The conditions for this imply that 

A,, = a,,(t)exp ( # O f .  (qo x V x Q,+ Q,  x V x qo)dJ' +ih,t , (25 )  

and h j g 2 . d s  = Z;IAmoI2$ (QAxVxQ,+Q,xVxQ&) .ds .  (26 )  

These equations can be greatly simplified by manipulating the integrals involving 
Q,. For example, it is a straightforward calculation, using (8), to show that 

I 1  
m e 

i a  
%A, az Q& x V x Q,+ Q m x  V x Q& = r - ( Q A  x Q,), 

or equivalently, 

where the bracket 15 indicates evaluations at the top and bottom boundaries 
of the container. Furthermore, 

(nT x nB). (Q& x 0,) = ( n ~  - QA) (nB. Q,) - ( n ~  - 0,) ( n ~ .  Q A ) ,  (28) 

which according to (8) is identically zero at  X T  and EB.  This result, together with 
the identity 

allows the reduction of (26) to 

or more simply, just 

(According to (1 l), 

Equation (29) is then equivalent to 

which proves the statement (30).) 
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Thus, we conclude that there are no resonant non-linear interactions of 
inertial oscillations which produce an 0 (1) effect on the steady geostrophic mode 
in the long time scale 7. Minor 0 (8) oscillations along constant-height contours 
and equally small non-geostrophic circulations are generated, but no major 
resonant rectification occurs. 

The main effect, in this period of time, of a non-linear interaction on an inertial 
mode is to shift the frequency of oscillation, but the amplitude remains un- 
changed. This can be established from (25) by computing the absolute value of 
the modal coefficient: 

1 A,, l 2  = 1 a,, I2exp 7 [Qk . (qo x V x 0,) + Q, . (9, x V x QL)] dV . (31) 

The volume integral in this expression is, however, identically zero, a fact 
established in the following way. Note that 

{ S  1 
/[QL. (9, x V x Q,) + Q,. (9, x V x QL)ldV 

9 0 .  [QA x V x Qm+ Q, x V x Qk]dv, 

or, using (27), 
1 

qo . Q& x Q,]g dx  dy . 
However, the last integrand is proportional to the quantity 

(nT x n,) QL x Om]%, 
which is zero according to (28) and the boundary condition, n. Q, = 0 on Z. 
Thus, (31) becomes 

a I A,, l 2  = I a,, 1 2 ,  or I A,, 12 = 0,  

proving that the amplitude is a constant to this degree of approximation, within 
the time scale indicated. The effects of possible resonant triads, when the fre- 
quencies of two modes add exactly to that of a third have not been considered 
here except, of course, for the case of steady motion (zero frequency). The more 
general resonant-triad interaction cannot have an important influence on the 
primary geostrophic mode until t N c2. 

Longuet-Higgins & Gill (1967) examined the properties of resonant-triad inter- 
actions of plane, planetary waves in a study based on the p-plane approximation 
of the potential vorticity equation. The main interactions and energy transfer 
were shown to occur in the vicinity of a particular pair of latitude circles. In  
addition, it was found that zonal currents cannot gain or lose any energy by the 
mechanism of non-linear wave interactions, a conclusion which is, of course, a 
special case of the general result given here. 

4. Conclusion 
It has been shown that a general, inviscid, non-linear interaction of discrete 

inertial modes does not produce a significant (i.e. 0 (1))  steady circulation in a 
closed container in an 0 (&) interval of time. 
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The principal cause of the steady currents which do develop from oscillatory 
disturbances or excitations seems to be non-linear processes within the viscous 
boundary layers. This mechanism is also responsible for any significant changes 
in the amplitudes of contained inertial modes in the 0(c1) time period. Large 
changes might occur for t - c2, but to examine this possibility, it is necessary 
to extend the asymptotic analysis to still higher order. 

This research was partially supported by the Office of Scientific Research of 
the U.S. Air Force, Contract F44620-67-C-0007. 

Appendix 
The relevant details of the analysis summarized in $ 2  are set forth here. 
The expanded versions of (18) and (19) are 
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If, now, the expansions given in (20) are substituted into the foregoing and the 
coefficients of the same powers of 6 equated, then an infinite set of equations is 
obtained. Those that correspond to eo and e1 are 

-- aA,O ih, Am, = 0,  
at 

h f d 2 . d s  = 0,  

+ AAoAA0 {Q& x V x Q3. ds] . (A 6) 
d 

Equations (A3) and (A5) indicate that qo is steady, i.e. independent of the 
‘fast’ variable t and that A,, is purely oscillatory on the same time scale. The 
solutions for Am, and q, would contain terms proportional to t if such secular 
quantities are not suppressed. This may be done by choosing aAmO/aT and 
aqo/a7 to eliminate the inhomogeneous terms in (A4) and (As)  that also corre- 
spond to solutions of the respective homogeneous equations. We are led in this 
manner to (25) and (26) which formed the cornerstone of our analysis. 
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